Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures.
نویسندگان
چکیده
Several subtypes of Ca2+ channel support the release of glutamate at excitatory synapses. We investigated the pattern of colocalization of these subtypes on presynaptic terminals in hippocampal cultures. N-type (conotoxin GVIA-sensitive) or P/Q-type (agatoxin IVA-sensitive) Ca2+ channels were blocked selectively, and the reduction in transmitter release probability (Pr) was measured with MK-801. The antagonists completely blocked release at some terminals, reduced Pr at others, and failed to affect the remainder. In contrast, nonselective reduction of presynaptic Ca2+ influx by adding Cd2+ or lowering external Ca2+ reduced Pr uniformly at all terminals. We conclude from these results that the mixture of N-type and P/Q-type channels varies markedly between terminals on the same afferent. The distribution of Ca2+ channel subtypes was the same for high and low Pr terminals. Given that Ca2+ channel subtypes are affected differentially by neuromodulators, these findings lead to the possibility of terminal-specific modulation of synaptic function.
منابع مشابه
N- and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses.
The relationship between extracellular Ca2+ concentration and EPSC amplitude was investigated at excitatory autapses on cultured hippocampal neurons. This relationship was steeply nonlinear, implicating the cooperative involvement of several Ca2+ ions in the release of each vesicle of transmitter. The cooperativity was estimated to be 3.1 using a power function fit and 3.3 using a Hill equation...
متن کاملEffects of Propofol on Glutamate-Induced Calcium Mobilization in Presynaptic Boutons of Rat Hippocampal Neurons
Recent reports have suggested that various general anesthetics affect presynaptic processes in the central nervous system. However, characterizations of the influence of intravenous anesthetics on neurotransmitter release from presynaptic nerve terminals (boutons) are insufficient. Because the presynaptic calcium concentration ([Ca2+]pre) regulates neurotransmitter release, we investigate the e...
متن کاملDifferential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons.
Voltage-gated Ca2+ channels in presynaptic terminals initiate the Ca2+ inflow necessary for transmitter release. At a variety of synapses, multiple Ca2+ channel subtypes are involved in synaptic transmission and plasticity. However, it is unknown whether presynaptic Ca2+ channels differ in gating properties and whether they are differentially activated by action potentials or subthreshold volta...
متن کاملChanges in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.
It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-ty...
متن کاملDifferent relationship of N- and P/Q-type Ca2+ channels to channel-interacting slots in controlling neurotransmission at cultured hippocampal synapses.
Synaptic transmission at CNS synapses is often mediated by joint actions of multiple Ca(2+) channel subtypes, most prominently, P/Q- and N-type. We have proposed that P/Q-type Ca(2+) channels saturate type-preferring slots at presynaptic terminals, which impose a ceiling on the synaptic efficacy of the channels. To test for analogous interactions for presynaptic N-type Ca(2+) channels, we overe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 8 شماره
صفحات -
تاریخ انتشار 1997